A comparison of blood vessel features and local binary patterns for colorectal polyp classification

نویسندگان

  • Sebastian Gross
  • Thomas Stehle
  • Alexander Behrens
  • Roland Auer
  • Til Aach
  • Ron Winograd
  • Christian Trautwein
  • Jens Tischendorf
چکیده

Colorectal cancer is the third leading cause of cancer deaths in the United States of America for both women and men. By means of early detection, the five year survival rate can be up to 90%. Polyps can to be grouped into three different classes: hyperplastic, adenomatous, and carcinomatous polyps. Hyperplastic polyps are benign and are not likely to develop into cancer. Adenomas, on the other hand, are known to grow into cancer (ademoma-carcinoma sequence). Carcinomas are fully developed cancers and can be easily distinguished from adenomas and hyperplastic polyps. A recent narrow band imaging (NBI) study by Tischendorf et al. has shown that hyperplastic polyps and adenomas can be discriminated by their blood vessel structure. We designed a computer-aided system for the differentiation between hyperplastic and adenomatous polyps. Our development aim is to provide the medical practitioner with an additional objective interpretation of the available image data as well as a confidence measure for the classification. We propose classification features calculated on the basis of the extracted blood vessel structure. We use the combined length of the detected blood vessels, the average perimeter of the vessels and their average gray level value. We achieve a successful classification rate of more than 90% on 102 polyps from our polyp data base. The classification results based on these features are compared to the results of Local Binary Patterns (LBP). The results indicate that the implemented features are not inferior to LBP. Further testing will be done to evaluate combinations of the implemented features and LBP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorectal Polyp Detection in Colonoscopy Video Frames

Colonoscopy is currently the best technique available for the detection of colon cancer or colorectal polyps or other precursor lesions. Computer aided detection (CAD) is based on very complex pattern recognition. Local binary patterns (LBPs) are strong illumination invariant texture primitives. Histograms of binary patterns computed across regions are used to describe textures. Every pixel is ...

متن کامل

Comparative Analysis of Feature Extraction Methods for Colorectal Polyp Images in Optical Projection Tomography

Optical Projection Tomography imaging has potential to enhance diagnostic analysis of colorectal polyps. In this paper, the problem of feature extraction for automated classification of optical projection tomography images of colorectal polyp is addressed. 3D patches are classified using the bag of visual words framework and support vector machines. We compare the utility of dimensionality redu...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009